Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что существуют числа, не менее чем 100 способами представимые в виде суммы 2001 слагаемого, каждое из которых является 2000-й степенью целого числа.

Вниз   Решение


Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.

ВверхВниз   Решение


Пусть a, b и c — комплексные числа, лежащие на единичной окружности с центром в нуле. Докажите, что комплексное число $ {\frac{1}{2}}$(a + b + c - $ \bar{a}$bc) соответствует основанию высоты, опущенной из вершины a на сторону bc.

ВверхВниз   Решение


Пусть A – основание перпендикуляра, опущенного из центра данной окружности на данную прямую l. На этой прямой взяты еще две точки B и C так, что
AB = AC.  Через точки B и C проведены две произвольные секущие, из которых одна пересекает окружность в точках P и Q, вторая – в точках M и N. Пусть прямые PM и QN пересекают прямую l в точках R и S. Докажите, что  AR = AS.

ВверхВниз   Решение


Докажите, что число    (m, n ≥ 0)  целое.

ВверхВниз   Решение


Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные точке O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны, а прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Вверх   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 489]      



Задача 32116

Темы:   [ Неравенства с углами ]
[ Против большей стороны лежит больший угол ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Пусть a, b, c – длины сторон треугольника; α, β, γ – величины противолежащих углов. Докажите, что    aα + bβ + cγ ≥ aβ + bγ + cα.

Прислать комментарий     Решение


Задача 35020

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Принцип Дирихле (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 6,7,8

10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.
Сколько грибов собрал каждый?

Прислать комментарий     Решение

Задача 64665

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 10,11

Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.

Прислать комментарий     Решение

Задача 64838

Темы:   [ НОД и НОК. Взаимная простота ]
[ Средние величины ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
  а) ровно в шесть раз;
  б) ровно в пять раз?

Прислать комментарий     Решение

Задача 88101

Темы:   [ Линейные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 5,6,7

Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 489]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .