ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Принцип Дирихле" Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Крестьянину надо перевезти через речку волка, козу и капусту. Лодка вмещает одного человека, а с ним либо волка, либо козу, либо капусту. Если без присмотра оставить козу и волка, волк съест козу. Если без присмотра оставить капусту и козу, коза съест капусту. Как крестьянину перевезти свой груз через речку? Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на k + 1? На плоскости нарисовано 12 прямых, проходящих через точку О. Докажите, что можно выбрать две из них так, что угол между ними будет меньше 17 градусов. Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга? Докажите, что при инверсии сохраняется угол между
окружностями (между окружностью и прямой, между прямыми).
В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.
Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100. Докажите, что
SABC Сто человек сидят за круглым столом, причём более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга. Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре? Даны отрезки AB, CD и точка O. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку O, не пересекает другой отрезок. Сколько может быть отмеченных концов? Докажите, что среди степеней двойки есть две, разность которых делится на 1987. Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11. Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы? На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число a + b – 1. Противоположные стороны выпуклого шестиугольника
попарно равны и параллельны. Докажите, что он имеет центр симметрии.
Внутри прямоугольника ABCD взята точка M. Докажите, что
существует выпуклый четырехугольник с перпендикулярными диагоналями
длины AB и BC, стороны которого равны AM, BM, CM, DM.
Докажите, что две непересекающиеся окружности S1 и S2
(или окружность и прямую) можно при помощи
инверсии перевести в пару концентрических окружностей.
Существует ли такая бесконечная последовательность, состоящая из Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка –
в 5 и 8 л. Попробуйте, пользуясь этими бочонками: 10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток. Докажите, что при параллельном переносе окружность переходит в окружность.
В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д. Трое туристов должны перебраться с одного берега реки на другой. В их распоряжении старая лодка, которая может выдержать нагрузку всего в 100 кг. Вес одного из туристов 45 кг, второго — 50 кг, третьего — 80 кг. Как должны они действовать, чтобы перебраться на другой берег? Запах от цветущего кустика ландышей распространяется в радиусе 20 м вокруг него. Сколько цветущих кустиков ландышей необходимо посадить вдоль прямолинейной 400-метровой аллеи, чтобы в каждой ее точке пахло ландышем? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 591]
В классе учатся 38 человек. Докажите, что среди них найдутся четверо, родившихся в один месяц.
Запах от цветущего кустика ландышей распространяется в радиусе 20 м вокруг него. Сколько цветущих кустиков ландышей необходимо посадить вдоль прямолинейной 400-метровой аллеи, чтобы в каждой ее точке пахло ландышем?
Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.
В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.
Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 591]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке