Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

На дуге  A1A2n + 1 описанной окружности S правильного (2n + 1)-угольника  A1...A2n + 1 взята точка A. Докажите, что:
а)  d1 + d3 + ... + d2n + 1 = d2 + d4 + ... + d2n, где di = AAi;
б)  l1 + ... + l2n + 1 = l2 + ... + l2n, где li — длина касательной, проведенной из точки A к окружности радиуса r, касающейся S в точке Ai (все касания одновременно внутренние или внешние).

Вниз   Решение


Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

ВверхВниз   Решение


На сторонах OA и OB четверти AOB круга построены как на диаметрах полуокружности ACO и OCB, пересекающиеся в точке C. Докажите, что:

1) прямая OC делит угол AOB пополам;

2) точки A, C и B лежат на одной прямой;

3) дуги AC, CO и CB равны между собой.

ВверхВниз   Решение


Окружность касается сторон AB и AD прямоугольника ABCD и пересекает сторону DC в единственной точке F и сторону BC в единственной точке E.
Найдите площадь трапеции AFCB, если  AB = 32,  AD = 40  и  BE = 1.

ВверхВниз   Решение


Докажите, что две касающиеся окружности гомотетичны относительно их точки касания.

ВверхВниз   Решение


Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.

ВверхВниз   Решение


В треугольной пирамиде SABC известны плоские углы при вершине S : BSC = 90o , ASC = ASB = 60o . Вершины A , S и середины рёбер SB , SC , AB , AC лежат на поверхности шара радиуса 3. Докажите, что ребро SA является диаметром этого шара, и найдите объём пирамиды.

ВверхВниз   Решение


С помощью циркуля и линейки постройте четырёхугольник ABCD по четырём углам и сторонам AB = a и CD = b.

ВверхВниз   Решение


Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники.
Может ли угол грани при вершине пирамиды равняться 100°?

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1.

ВверхВниз   Решение


k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



Задача 97806

Темы:   [ Комбинаторика (прочее) ]
[ Индукция в геометрии ]
[ Алгоритм Евклида ]
[ Соображения непрерывности ]
Сложность: 6
Классы: 9,10,11

k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

Прислать комментарий     Решение

Задача 98246

Темы:   [ Периодичность и непериодичность ]
[ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?

Прислать комментарий     Решение

Задача 79261

Темы:   [ НОД и НОК. Взаимная простота ]
[ Последовательности (прочее) ]
[ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 9,10,11

В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .