ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$? Докажите, что
Около трапеции ABCD описана окружность, центр которой лежит
на основании AD. Найдите площадь трапеции, если
AB =
Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости. Из двух математиков и десяти экономистов надо составить комиссию из восьми человек. Докажите, что
Может ли во время шахматной партии на каждой из 30 диагоналей оказаться нечётное число фигур? Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из 4n – 2 диагоналей равнялась 1. Можно ли это сделать при
Окружность с центром в вершине прямого угла прямоугольного треугольника радиуса, равного меньшему катету, делит гипотенузу на отрезки в 98 и 527 (начиная от меньшего катета). Найдите катеты.
Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел: (8, 9), (288, 289). |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 187]
Найдите все такие натуральные k, что произведение первых k простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей чем первая).
Найдите все такие натуральные k, что произведение первых k нечётных простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей, чем первая).
Из первых k простых чисел 2, 3, 5, ..., pk (k > 5) составлены всевозможные произведения, в которые каждое из чисел входит не более одного раза (например, 3·5, 3·7·... ·pk, 11 и т. д.). Обозначим сумму всех таких чисел через S. Доказать, что S + 1 разлагается в произведение более 2k простых сомножителей.
Известно, что an – bn делится на n (a, b, n – натуральные числа, a ≠ b). Доказать, что
Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел: (8, 9), (288, 289).
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 187]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке