ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Функция F задана на всей вещественной оси, причём для любого x имеет место равенство: F(x + 1)F(x) + F(x + 1) + 1 = 0. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 98]
Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2.
Функция F задана на всей вещественной оси, причём для любого x имеет место равенство: F(x + 1)F(x) + F(x + 1) + 1 = 0.
Задано правило, которое каждой паре чисел x, y ставит в соответствие некоторое число x*y, причём для любых x, y, z выполняются тождества:
x1 – вещественный корень уравнения x² + ax + b = 0, x2 – вещественный корень уравнения x² – ax – b = 0.
Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 98] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|