ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой.
Точка M находится на продолжении хорды AB. Докажите, что если точка C окружности такова, что MC2 = MA . MB, то MC — касательная к окружности.
Имеется полоска 1×99, разбитая на 99 клеток 1×1, которые раскрашены через одну в чёрный и белый цвет. Разрешается перекрашивать одновременно все клетки любого клетчатого прямоугольника 1×k. За какое наименьшее число перекрашиваний можно сделать всю полоску одноцветной? Из середины гипотенузы восставлен перпендикуляр до пересечения с катетом, и полученная точка соединена с концом другого катета отрезком, который делит угол треугольника в отношении 2 : 5 (меньшая часть – при гипотенузе). Найдите этот угол. Докажите, что при любом натуральном n |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 105]
Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
Даны многочлены P(x), Q(x). Известно, что
для некоторого многочлена R(x, y) выполняется равенство
P(x) – P(y) = R(x, y)(Q(x) – Q(y)).
Петя покрасил 100 натуральных чисел в красный цвет и 100 других натуральных чисел — в синий. Вася выписал на доску 200 выражений: для каждого красного числа $n$ записал $\frac{x^n}{1-x}$, а для каждого синего числа $m$ записал $\frac{x^m}{1-x^{-1}}.$ После этого мальчики сложили все записанные выражения, привели подобные и упростили выражение. Докажите, что у них получился многочлен от $x$.
Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0.
Докажите, что при любом натуральном n
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 105]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке