Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет
а) 100;
б) 99;
в) 98?

Вниз   Решение


В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

ВверхВниз   Решение


Докажите равенство  

ВверхВниз   Решение


Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

ВверхВниз   Решение


Вычислите производящие функции следующих последовательностей:
а)     б)  

ВверхВниз   Решение


Даны два набора из n вещественных чисел:  a1, a2, ..., an  и  b1, b2, ..., bn.  Докажите, что если выполняется хотя бы одно из двух условий:
  а) из  ai < aj  следует, что  bi ≤ bj;
  б) из  ai < a < aj,  где  a = 1/n (a1 + a2 + ... + an),  следует, что  bi ≤ bj,
то верно неравенство   n(a1 b1 + a2b2 + ... + anbn) ≥ (a1 + a2 + ... + an)(b1 + b2 + ... + bn).

ВверхВниз   Решение


Какое слагаемое в разложении  (1 + )100  по формуле бинома Ньютона будет наибольшим?

ВверхВниз   Решение


В разложении  (x + y)n  по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите x, y и n.

ВверхВниз   Решение


Докажите, что если p – простое число и  1 ≤ k ≤ p – 1,  то    делится на p.

ВверхВниз   Решение


Здесь изображен фрагмент таблицы, которая называется треугольником Лейбница. Его свойства "аналогичны в смысле противоположности" свойствам треугольника Паскаля. Числа на границе треугольника обратны последовательным натуральным числам. Каждое число внутри равно сумме двух чисел, стоящих под ним. Найдите формулу, которая связывает числа из треугольников Паскаля и Лейбница.

ВверхВниз   Решение


На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1.

ВверхВниз   Решение


На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 126]      



Задача 66511

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 5,6,7

Вокруг круглого озера через равные промежутки растут 2019 деревьев: 1009 сосен и 1010 ёлок. Докажите, что обязательно найдется дерево, рядом с которым растёт сосна и с другой стороны от которого через одно дерево тоже растёт сосна.
Прислать комментарий     Решение


Задача 115384

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 7,8,9

Легко разместить комплект кораблей для игры в "Морской бой" на доске 10× 10 (см. рис.). А на какой наименьшей квадратной доске можно разместить этот комплект? (Напомним, что согласно правилам корабли не должны соприкасаться даже углами.)


Прислать комментарий     Решение

Задача 79292

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Касательные к сферам ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 10,11

Шарообразная планета окружена 37-ю точечными астероидами. Доказать, что в любой момент на поверхности планеты найдётся точка, из которой астроном не сможет наблюдать более 17 астероидов.

Примечание. Астероид, расположенный на линии горизонта, не виден.
Прислать комментарий     Решение


Задача 98267

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 
Прислать комментарий     Решение

Задача 109937

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Процессы и операции ]
[ Перебор случаев ]
[ Инварианты ]
Сложность: 4-
Классы: 9,10,11

Имеется таблица n×n, в  n – 1  клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .