ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
  а) делит периметр треугольника ABC пополам;
  б) параллельна биссектрисе угла ACB.

   Решение

Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 563]      



Задача 65003

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC  (∠C = 90°)  биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что  OIAB.

Прислать комментарий     Решение

Задача 98463

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
  а) делит периметр треугольника ABC пополам;
  б) параллельна биссектрисе угла ACB.

Прислать комментарий     Решение

Задача 64669

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные и описанные окружности ]
[ Углы между биссектрисами ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 10,11

В квадрате ABCD на стороне ВС взята точка М, а на стороне CD – точка N так, что  ∠MAN = 45°.
Докажите, что центр описанной окружности треугольника AMN принадлежит диагонали АС.

Прислать комментарий     Решение

Задача 65203

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Композиции симметрий ]
Сложность: 4-
Классы: 9,10,11

Автор: Ивлев Ф.

На основании AC равнобедренного треугольника ABC взяли произвольную точку X, а на боковых сторонах – точки P и Q так, что XPBQ – параллелограмм. Докажите, что точка Y, симметричная точке X относительно PQ, лежит на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 115292

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .