Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

а) Пусть $ \varepsilon$ = $ {\frac{1}{2}}$ + $ {\frac{i\sqrt{3}}{2}}$. Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a + $ \varepsilon^{2}_{}$b + $ \varepsilon^{4}_{}$c = 0 или a + $ \varepsilon^{4}_{}$b + $ \varepsilon^{2}_{}$c = 0.
б) Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a2 + b2 + c2 = ab + bc + ac.

Вниз   Решение


Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите, что прямая Симсона точки B относительно треугольника ACD перпендикулярна прямой Эйлера треугольника ACD.

ВверхВниз   Решение


Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.

ВверхВниз   Решение


В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

ВверхВниз   Решение


Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 98588

Темы:   [ Тригонометрические неравенства ]
[ Классические неравенства (прочее) ]
[ Монотонность, ограниченность ]
Сложность: 3+
Классы: 10,11

Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

Прислать комментарий     Решение

Задача 98505

Темы:   [ Рациональные функции (прочее) ]
[ Четность и нечетность ]
[ Монотонность, ограниченность ]
Сложность: 4-
Классы: 10,11

Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

Прислать комментарий     Решение

Задача 65855

Темы:   [ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 9,10,11

На биссектрисе AA1 треугольника ABC выбрана точка X. Прямая BX пересекает сторону AC в точке B1, а прямая CX пересекает сторону AB в точке C1. Отрезки A1B1 и CC1 пересекаются в точке P, а отрезки A1C1 и BB1 пересекаются в точке Q. Докажите, что углы PAC и QAB равны.

Прислать комментарий     Решение

Задача 67002

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 10,11

Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)
Прислать комментарий     Решение


Задача 109565

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что если (x+)(y+)=1 , то x+y=0 .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .