ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Две окружности касаются друг друга внешним образом. Четыре точки A, B, C и D касания их общих внешних касательных последовательно соединены. Докажите, что в четырёхугольник ABCD можно вписать окружность и найдите её радиус, если радиусы данных окружностей равны R и r.
a, b, c – такие три числа, что abc > 0 и a + b + c > 0. Доказать, что an + bn + cn > 0 при любом натуральном n.
Дана трапеция ABCD с основаниями
AD = 3
В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.
arctg 1 + arctg
Точка M лежит на стороне AB треугольника ABC, AM = a, BM = b, CM = c, c < a, c < b. Докажите, что если a, b, c, d, x, y, u, v – вещественные числа и abcd > 0, то (ax + bu)(av + by)(cx + dv)(cu + dy) ≥ (acuvx + bcuxy + advxy + bduvy)(acx + bcu + adv + bdy).
В равнобедренном треугольнике ABC (AB = AC) проведены
биссектрисы AA1, BB1 и CC1. Площадь треугольника ABC
относится к площади треугольника
A1B1C1 как
На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и
Окружность касается одной стороны прямого угла с вершиной O и пересекает вторую сторону в точках A и B. Найдите радиус окружности, если OA = a и OB = b.
Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение радиуса вписанной окружности к расстоянию между центрами вписанной и описанной окружностей равно равно m. Найдите углы треугольника.
В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.
В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны В четырёхугольнике ABCD ∠B = ∠D = 90° и AC = BC + DC. Точка P на луче BD такова, что BP = AD. В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$. Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001). |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 201]
а) Существуют ли четыре таких различных натуральных числа, что
сумма каждых трёх из них есть простое число?
Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001).
Найдите все простые числа р, для каждого из которых существует такое натуральное число m, что
Доказать, что наибольший общий делитель чисел вида p4 – 1, где p – простое число, большее 5, равен 240.
Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 201]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке