ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Одна из боковых сторон трапеции равна сумме оснований. Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом? Точка M – середина большей боковой стороны CD прямоугольной трапеции ABCD. Описанные около треугольников BCM и AMD окружности ω1 и ω2 пересекаются в точке E. Пусть ED пересекает ω1 в точке F, а FB пересекает AD в G. Докажите, что GM – биссектриса угла BGD. Докажите, что биссектрисы углов выпуклого
четырехугольника образуют вписанный четырехугольник.
Вершина A остроугольного треугольника ABC
соединена отрезком с центром O описанной окружности. Из вершины A
проведена высота AH. Докажите, что
Две окружности имеют радиусы R1 и R2, а расстояние
между их центрами равно d. Докажите, что эти окружности
ортогональны тогда и только тогда, когда
d2 = R12 + R22.
Две окружности S1 и S2 с центрами O1 и O2
касаются в точке A. Через точку A проведена прямая,
пересекающая S1 в точке A1 и S2 в точке A2. Докажите,
что
O1A1 || O2A2.
Изначально на стол кладут 100 карточек, на каждой из которых записано по натуральному числу; при этом среди них ровно 28 карточек с нечётными числами. Затем каждую минуту проводится следующая процедура. Для каждых 12 карточек, лежащих на столе, вычисляется произведение записанных на них чисел, все эти произведения складываются, и полученное число записывается на новую карточку, которая добавляется к лежащим на столе. Можно ли выбрать исходные 100 чисел так, что для любого натурального d на столе рано или поздно появится карточка с числом, кратным 2d? Известно, что Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания? К числу 15 припишите слева и справа по одной цифре так, чтобы полученное число делилось на 15. В бесконечной последовательности натуральных чисел каждое следующее число получается прибавлением к предыдущему одной из его ненулевых цифр. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]
Первая производная бесконечной последовательности a1,a2, ... – это последовательность a′n=an+1−an (где n = 1, 2, ...), а её k-я производная – это первая производная её (k–1)-й производной
Доказать, что для любых трёх бесконечных последовательностей натуральных чисел
ap
За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).
На доску последовательно записываются натуральные числа. На n-м шаге (когда написаны числа a1, a2, ..., an–1) пишется любое число, которое нельзя представить в виде суммы a1k1 + a2k2 + ... + an–1kn–1, где ki – целые неотрицательные числа (на a1 никаких ограничений не накладывается). Доказать, что процесс написания чисел не может быть бесконечным.
В бесконечной последовательности натуральных чисел каждое следующее число получается прибавлением к предыдущему одной из его ненулевых цифр.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке