ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности. Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых Расстояние между двумя кругами — это расстояние между их ближайшими точками. Общие внешние касательные к парам окружностей S1
и S2, S2 и S3, S3 и S1 пересекаются в точках A,
B и C соответственно. Докажите, что точки A, B и C лежат
на одной прямой.
Какое слагаемое в разложении (1 + Постройте четырехугольник ABCD, в который можно
вписать окружность, зная длины двух соседних сторон AB
и AD и углы при вершинах B и D.
С помощью циркуля и линейки постройте квадрат по четырём точкам, лежащим на четырёх его сторонах.
С помощью циркуля и линейки проведите прямую, параллельную основаниям трапеции, так, чтобы отрезок этой прямой внутри трапеции делился бы диагоналями на три равные части. Постройте четырехугольник по углам и диагоналям.
Пусть
A1, B1,..., F1 — середины сторон
AB, BC,..., FA произвольного шестиугольника. Докажите, что точки
пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.
n отрезков A1 B1 , A2 B2 , ... , An Bn (рис. 5) расположены
на плоскости так, что каждый из них начинается на одной из двух данных
прямых, оканчивается на другой прямой, и проходит через точку G (не
лежащую на данных прямых) — центр тяжести единичных масс, помещенных
в точках A1 , A2 , ... , An . Докажите, что
Постройте вписанный четырехугольник по четырем
сторонам (Брахмагупта).
В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции? |
Страница: << 1 2 3 4 >> [Всего задач: 16]
В таблицу записано девять чисел: a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её
столбцов: a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?
На отрезке [0, 1] отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.
Когда закончился хоккейный турнир (в один круг), оказалось, что для каждой группы команд можно найти команду (может быть, из той же группы), которая набрала в играх с командами этой группы нечётное число очков. Докажите, что в турнире участвовало чётное число команд. (Поражение – 0 очков, ничья – 1 очко, выигрыш – 2 очка.)
Страница: << 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке