ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 965]      



Задача 76492

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 8,9

Найти целое число a, при котором  (xa)(x – 10) + 1  разлагается в произведение  (x + b)(x + c)  двух множителей с целыми b и c.

Прислать комментарий     Решение

Задача 77989

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 9,10,11

Даны уравнения  ax² + bx + c = 0   (1)    и – ax² + bx + c   (2).     Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения  ½ ax² + bx + c,  что либо  x1x3x2,  либо  x1x3x2.

Прислать комментарий     Решение

Задача 78509

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Найти все многочлены P(x), для которых справедливо тождество:  xP(x – 1) ≡ (x – 26)P(x).

Прислать комментарий     Решение

Задача 79260

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Дано число  A = ,  где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что  A = .

Прислать комментарий     Решение

Задача 79263

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 8,9,10

Дано число  A = ,  где n и m – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что  A = .

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .