Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 965]
|
|
Сложность: 4- Классы: 9,10
|
Все значения квадратного трёхчлена ax² + bx + c на отрезке [0, 1] по модулю не превосходят 1.
Какое наибольшее значение при этом может иметь величина |a| + |b| + |c|?
|
|
Сложность: 4- Классы: 8,9,10
|
Решите уравнение (1 + x + x²)(1 + x + ... + x10) = (1 + x + ... + x6)².
Докажите, что любое целое число можно представить в виде суммы кубов пяти
целых чисел.
Например, 52 = 4³ + (−3)³ + 2³ + 2³ + (−1)³.
|
|
Сложность: 4- Классы: 8,9,10,11
|
На координатной плоскости xOy построена парабола y = x². Затем начало координат и оси стёрли.
Как их восстановить с помощью циркуля и линейки (используя имеющуюся параболу)?
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом.
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 965]