Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 979]
|
[Числа Мерсенна]
|
|
Сложность: 3 Классы: 7,8,9
|
Пусть a и n – натуральные числа, большие 1. Докажите, что если число an – 1 простое, то a = 2 и n – простое.
(Числа вида q = 2n – 1 называются числами Мерсенна.)
|
|
|
Сложность: 3 Классы: 8,9,10
|
Найдите такое n, чтобы число 10n – 1 делилось на а) 7; б) 13; в) 91; г) 819.
|
|
|
Сложность: 3 Классы: 8,9,10
|
При каком значении параметра m сумма квадратов корней уравнения
x² – (m + 1)x + m – 1 = 0 является наименьшей?
|
[Теорема Безу]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что остаток от деления многочлена P(x) на x – c равен P(c).
|
|
|
Сложность: 3 Классы: 9,10,11
|
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 979]