ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 965]      



Задача 61387

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11

Докажите неравенства:  
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61433

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 9,10,11

Докажите, что если Q(x) – многочлен степени  m + 1,  то  P(x) = ΔQ(x)  – многочлен степени m.

Прислать комментарий     Решение

Задача 61526

Темы:   [ Раскладки и разбиения ]
[ Многочлены Гаусса ]
[ Производящие функции ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 10,11

  Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525:   fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl).

  а) Докажите равенства:  fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x).

  б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).

Прислать комментарий     Решение

Задача 61530

Темы:   [ Обыкновенные дроби ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9,10

Иногда, вычитая дроби, можно вычитать их числители и складывать знаменатели. Например:  
Для каких дробей это возможно?

Прислать комментарий     Решение

Задача 64431

Темы:   [ Арифметические действия. Числовые тождества ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11

Верно ли, что  262 + 1  делится на  231 + 216 + 1?

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .