Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 965]
|
|
Сложность: 3 Классы: 7,8,9
|
Про различные числа a и b известно, что . Найдите .
На рисунке изображен график функции y = x² + ax + b. Известно, что прямая AB перпендикулярна прямой y = x.
Найдите длину отрезка OC.
Корни квадратного трёхчлена f(x) = x² + bx + c равны m1 и m2, а корни квадратного трёхчлена g(x) = x² + px + q равны k1 и k2.
Докажите, что f(k1) + f(k2) + g(m1) + g(m2) ≥ 0.
|
|
Сложность: 3 Классы: 7,8,9
|
Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1.
Изменится ли сумма квадратов на этот раз, и если да, то на сколько?
|
|
Сложность: 3 Классы: 8,9,10
|
Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.
Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 965]