Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и  a > 1.
Докажите, что если  am + bm  делится на  an + bn,  то m делится на n.

Вниз   Решение


а) Докажите, что существует единственное аффинное преобразование, которое переводит данную точку O в данную точку O', а данный базис векторов  e1, e2 — в данный базис  e1', e2'.
б) Даны два треугольника ABC и A1B1C1. Докажите, что существует единственное аффинное преобразование, переводящее точку A в A1, B — в B1, C — в C1.
в) Даны два параллелограмма. Докажите, что существует единственное аффинное преобразование, которое один из них переводит в другой.

ВверхВниз   Решение


Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.

ВверхВниз   Решение


Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.

ВверхВниз   Решение


Дано число 1·2·3·4·5·...·56·57.
  а) Какая последняя цифра этого числа?
  б) Каковы десять последних цифр этого числа?

ВверхВниз   Решение


Петя написал на доске верное равенство: 35+10-41=42+12-50, а   затем вычел из обеих частей по 4:  35+10-45=42+12-54. Он заметил, что в левой части равенства все числа делятся на 5, а в правой - на 6.  Тогда он вынес в левой части 5 за скобки, а в правой - 6 и получил 5(7+2-9)=6(7+2-9). Сократив обе части на общий множитель, Петя получил, что 5=6. Где он ошибся?

Вверх   Решение

Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1010]      



Задача 109631

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 3
Классы: 9

Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?

Прислать комментарий     Решение

Задача 111644

Темы:   [ Арифметическая прогрессия ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

Прислать комментарий     Решение

Задача 115450

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Классическая комбинаторика (прочее) ]
[ Формула включения-исключения ]
Сложность: 3
Классы: 7,8,9,10

Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?

Прислать комментарий     Решение

Задача 116799

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?

Прислать комментарий     Решение

Задача 116885

Темы:   [ Правильные многоугольники ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Дан правильный девятиугольник.
Сколькими способами можно выбрать три его вершины так, чтобы они являлись вершинами равнобедренного треугольника?

Прислать комментарий     Решение

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1010]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .