ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 5292]
Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.
В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.
В пространстве заданы три луча: DA, DB и DC,
имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°.
Сфера пересекает луч DA в точках A1 и A2, луч
DB – в точках B1 и B2, луч DC
– в точках C1 и C2.
Найдите площадь треугольника A2B2C2,
если площади треугольников DA1B1,
DA1C1, DB1C1 и
DA2B2 равны соответственно
Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если ∠A = 2α.
В прямоугольном треугольнике ABC с равными катетами AC и BC на
стороне AC как на диаметре построена окружность, пересекающая
сторону AB в точке M. Найдите расстояние от вершины B до центра
этой окружности, если
BM =
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 5292]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке