ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 5264]      



Задача 116354

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3-
Классы: 8,9,10

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

Прислать комментарий     Решение

Задача 35486

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Прислать комментарий     Решение


Задача 35607

Тема:   [ Теорема синусов ]
Сложность: 3-
Классы: 9,10

Существует ли невырожденный треугольник АВС, для углов которого выполняется равенство: sinA + sinB = sinC?
Прислать комментарий     Решение


Задача 52623

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике боковая сторона делится точкой касания вписанного круга в отношении 7:5 (начиная от вершины). Найдите отношение боковой стороны к основанию.

Прислать комментарий     Решение


Задача 52626

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

Около окружности, радиус которой равен 4, описан прямоугольный треугольник, гипотенуза которого равна 26. Найдите периметр треугольника.

Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 5264]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .