Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 604]      



Задача 53090

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Через вершины A и C треугольника ABC проведена окружность K, центр которой лежит на описанной окружности треугольника ABC. Окружность K пересекает сторону AB в точке M. Найдите угол BAC, если  AM : AB = 2 : 7,  а  ∠B = arcsin 4/5.

Прислать комментарий     Решение

Задача 64976

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Построение треугольников по различным точкам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 9,10,11

Восстановите равнобедренный треугольник ABC  (AB = AC)  по точкам I, M, H пересечения биссектрис, медиан и высот соответственно.

Прислать комментарий     Решение

Задача 65362

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Удвоение медианы ]
[ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике ABC  AB = BC,  ∠B = 20°.  Точка M на основании AC такова, что  AM : MC = 1 : 2,  точка H – проекция C на BM. Найдите угол AHB.

Прислать комментарий     Решение

Задача 78288

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Поворотная гомотетия (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

ABC – равнобедренный треугольник;  AB = BC,  BH – высота, M – середина стороны AB, K – точка пересечения BH с описанной окружностью треугольника BMC. Доказать, что  BK = 3/2 R,  где R – радиус описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 111882

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 4
Классы: 8,9

Вписанная окружность касается сторон AB и AC треугольника ABC в точках X и Y соответственно. Точка K– середина дуги AB описанной окружности треугольника ABC (не содержащей точки C). Оказалось, что прямая XY делит отрезок AK пополам. Чему может быть равен угол BAC?

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .