ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 531]      



Задача 53251

Темы:   [ Теорема синусов ]
[ Две пары подобных треугольников ]
[ Площадь четырехугольника ]
Сложность: 4-
Классы: 8,9

Точки K, L, M делят стороны выпуклого четырёхугольника ABCD в отношении  AK : KB = CL : LB = CM : MD = 1 : 2.  Радиус описанной окружности треугольника KLM равен 5/2,  KL = 4,  LM = 3.  Какова площадь четырёхугольника ABCD, если известно, что  KM < KL?

Прислать комментарий     Решение

Задача 53252

Темы:   [ Теорема синусов ]
[ Две пары подобных треугольников ]
[ Площадь четырехугольника ]
Сложность: 4-
Классы: 8,9

Точки A, B, C делят стороны выпуклого четырёхугольника KLMN в отношении  AK : AL = BM : BL = CM : CN = 1 : 2.  Площадь четырёхугольника KLMN
равна 9AB = BC = 2.  Каков радиус описанной окружности треугольника ABC, если известно, что  AC > AB?

Прислать комментарий     Решение

Задача 53268

Темы:   [ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Точка O делит отрезок AB на отрезки OA = 6 и OB = 4. С центром в точке O проведена окружность, из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, если OM = 12.

Прислать комментарий     Решение


Задача 55278

Темы:   [ Теорема синусов ]
[ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 8,9

В окружность радиуса 7 вписан выпуклый четырёхугольник ABCD. Стороны AB и BC равны. Площадь треугольника ABD относится к площади треугольника BCD, как 2:1. Угол ADC равен 120o. Найдите все стороны четырёхугольника ABCD.

Прислать комментарий     Решение


Задача 55279

Темы:   [ Теорема синусов ]
[ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 8,9

Выпуклый четырёхугольник ABCD вписан в окружность. Сторона AB равна стороне BC, а угол ADC равен 60o. Диагональ AC = 7. Диагонали AC и BD пересекаются в точке P. Площади треугольников ADP и CDP относятся как 3:1. Найдите все стороны четырёхугольника ABCD.

Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 531]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .