ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В языке племени АУ две буквы – "a" и "y". Некоторые последовательности этих букв являются словами, причём в каждом слове не меньше одной и не больше 13 букв. Известно, что если написать подряд любые два слова, то полученная последовательность букв не будет словом. Найдите максимальное возможное количество слов в таком языке.

Вниз   Решение


Найдите объём наклонной треугольной призмы, у которой площадь одной из боковых граней равна S , а расстояние от плоскости этой грани до противолежащего ребра равно d .

ВверхВниз   Решение


Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что  BX = BY.

ВверхВниз   Решение


На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 64882

Темы:   [ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Окружности ω1 и ω2 касаются друг друга внешним образом в точке P. Из точки A окружности ω2, не лежащей на линии центров окружностей, проведены касательные AB, AC к ω1. Прямые BP, CP вторично пересекают ω2 в точках E и F. Докажите, что прямая EF, касательная к ω2 в точке A, и общая касательная к окружностям в точке P пересекаются в одной точке.

Прислать комментарий     Решение

Задача 64924

Темы:   [ Окружности, вписанные в сегмент ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Автор: Нилов Ф.

В сегмент, ограниченный хордой и дугой AB окружности, вписана окружность ω с центром I. Обозначим середину указанной дуги AB через M, а середину дополнительной дуги через N. Из точки N проведены две прямые, касающиеся ω в точках C и D. Противоположные стороны AD и BC четырёхугольника ABCD пересекаются в точке Y, а его диагонали пересекаются в точке X. Докажите, что точки X, Y, I и M лежат на одной прямой.

Прислать комментарий     Решение

Задача 66320

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Пересекающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I и вписан в окружность Ω. Прямые AB и CD пересекаются в точке P, а прямые BC и AD пересекаются в точке Q. Докажите, что описанная окружность ω треугольника PIQ перпендикулярна Ω.

Прислать комментарий     Решение

Задача 66215

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Радикальная ось ]
[ Теоремы Чевы и Менелая ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

AA1, BB1, CC1 – высоты треугольника ABC,  B0 – точка пересечения BB1 и описанной окружности Ω, Q – вторая точка пересечения Ω и описанной окружности ω треугольника A1C1B0. Докажите, что BQ – симедиана треугольника ABC.

Прислать комментарий     Решение

Задача 116918

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10

На стороне BC квадрата ABCD выбрали точку M. Пусть X, Y, Z – центры окружностей, вписанных в треугольники ABM, CMD, AMD соответственно; Hx, Hy, Hz – ортоцентры треугольников AXB, CYD, AZD соответственно. Докажите, что точки Hx, Hy, Hz лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .