ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1275]      



Задача 64552

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3

В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.

Прислать комментарий     Решение

Задача 65995

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9,10

Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей.

Прислать комментарий     Решение

Задача 66592

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8,9,10,11

Дана равнобокая трапеция, сумма боковых сторон которой равна большему основанию. Докажите, что острый угол между диагоналями не больше чем $60^\circ$.
Прислать комментарий     Решение


Задача 66601

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ точка $O$ – центр описанной окружности. Точка $B_1$ симметрична точке $B$ относительно стороны $AC$. Прямые $AO$ и $B_1C$ пересекаются в точке $K$. Докажите, что луч $KA$ является биссектрисой угла $BKB_1$.
Прислать комментарий     Решение


Задача 66645

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .