Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 1282]      



Задача 67324

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ высоты $AH_A$, $BH_B$ и $CH_C$ пересекаются в точке $H$. Через точки, в которых окружность радиуса $HH_A$ с центром $H$ пересекает отрезки $BH$ и $CH$, проведена прямая $\ell_A$. Аналогично проведены прямые $\ell_B$ и $\ell_C$. Докажите, что точка пересечения высот треугольника, образованного прямыми $\ell_A$, $\ell_B$, $\ell_C$, совпадает с центром окружности, вписанной в треугольник $ABC$.
Прислать комментарий     Решение


Задача 67437

Темы:   [ Вписанный угол равен половине центрального ]
[ Биссектриса делит дугу пополам ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 9,10,11

Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.
Прислать комментарий     Решение


Задача 76509

Темы:   [ ГМТ - прямая или отрезок ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 10,11

Прямоугольный треугольник ABC движется по плоскости так, что его вершины B и C скользят по сторонам данного прямого угла. Доказать, что множеством точек A является отрезок и найти его длину.
Прислать комментарий     Решение


Задача 78713

Темы:   [ Пятиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
[ Центр поворотной гомотетии ]
[ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10

Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

Прислать комментарий     Решение

Задача 97896

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные и описанные окружности ]
[ Гомотетичные окружности ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9

На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.

Прислать комментарий     Решение

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .