ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 156 157 158 159 160 161 162 >> [Всего задач: 1284]      



Задача 64859

Темы:   [ Построение треугольников по различным точкам ]
[ Гомотетия: построения и геометрические места точек ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 9,10

В треугольнике провели высоту из одной вершины, биссектрису из другой и медиану из третьей, отметили точки их попарного пересечения, а затем всё, кроме этих отмеченных точек, стерли (три отмеченные точки различны, кроме того, известно, какая является чьим пересечением). Восстановите треугольник.

Прислать комментарий     Решение

Задача 64964

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Дан остроугольный треугольник ABC. Окружности с центрами A и C проходят через точку B, вторично пересекаются в точке F и пересекают описанную окружность ω треугольника ABC в точках D и E. Отрезок BF пересекает окружность ω в точке O. Докажите, что O – центр описанной окружности треугольника DEF.

Прислать комментарий     Решение

Задача 65004

Темы:   [ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что  ∠AXB = ∠A'C'B' + ∠ACB  и  ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.

Прислать комментарий     Решение

Задача 65038

Темы:   [ Построения (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10

Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
AQM = ∠BPM.

Прислать комментарий     Решение

Задача 65147

Темы:   [ Геометрия на клетчатой бумаге ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 6,7

На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину.

Прислать комментарий     Решение

Страница: << 156 157 158 159 160 161 162 >> [Всего задач: 1284]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .