Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 1282]
Дан треугольник ABC. Две окружности, проходящие через вершину A, касаются стороны BC в точках B и C соответственно. Пусть D – вторая точка пересечения этих окружностей (A лежит ближе к BC, чем D). Известно, что BC = 2BD. Докажите, что ∠DAB = 2∠ADB.
|
|
Сложность: 3+ Классы: 9,10
|
Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.
|
|
Сложность: 3+ Классы: 9,10,11
|
В четырёхугольнике ABCD AB = ВС = m, ∠АВС = ∠АDС = 120°. Найдите BD.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой.
Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 1282]