Версия для печати
Убрать все задачи
Стороны AB, BC, CD и DA описанного четырёхугольника ABCD касаются его вписанной окружности в точках K, L, M и N соответственно. Прямая, проведённая через точку C параллельно диагонали BD, пересекает прямые NL и KM в точках P и Q соответственно. Докажите, что CP = CQ.

Решение
Через точку L, взятую внутри параллелограмма ABCD, проведены прямые, параллельные его сторонам и пересекающие стороны AB и CD соответственно в точках K и G, а стороны BC и AD соответственно в точках F и M. Докажите, что прямые BM, KD и CL пересекаются в одной точке.


Решение
В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

Решение