ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 2247]      



Задача 54432

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В плоскости дан квадрат с последовательно расположенными вершинами A, B, C, D и точка O. Известно, что OB = OD = 13, OC = = 5$ \sqrt{2}$ и что площадь квадрата больше 225. Найдите длину стороны квадрата и выясните, где расположена точка O - вне или внутри квадрата.

Прислать комментарий     Решение


Задача 54434

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В плоскости дан квадрат с последовательно расположенными вершинами A, B, C, D и точка O. Известно, что OA = OC = 10, OD = = 6$ \sqrt{2}$ и что длина стороны квадрата не превосходит 3. Найдите площадь квадрата. Где расположена точка O - вне или внутри квадрата ?

Прислать комментарий     Решение


Задача 54479

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема синусов ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD стороны BC и AD параллельны, BC = a, AD = b, $ \angle$CAD = $ \alpha$, $ \angle$BAC = $ \beta$. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54482

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Высота трапеции, диагонали которой взаимно перпендикулярны, равна 4. Найдите площадь трапеции, если известно, что одна из её диагоналей равна 5.

Прислать комментарий     Решение


Задача 54497

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции средняя линия равна 5, а диагонали взаимно перпендикулярны. Найдите площадь трапеции.

Прислать комментарий     Решение


Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .