ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 2247]
Трапеция ABCD ( BC || AD) вписана в окружность. Известно, что BC = a, AD = b, CAD = . Найдите радиус окружности.
Треугольник и вписанный в него ромб имеют общий угол. Cтороны треугольника, заключающие этот угол, относятся как . Найдите отношение площади ромба к площади треугольника.
Диагонали AC и BD выпуклого четырёхугольника ABCD, площадь которого равна 28, пересекаются в точке O. Найдите площади треугольников AOB, BOC, COD и DOA, если известно, что площадь треугольника AOB в 2 раза больше площади треугольника COD, а площадь треугольника BOC в 18 раз больше площади треугольника DOA.
Диагональ трапеции делит её площадь в отношении 3:7. В каком отношении разделится площадь этой трапеции, если из конца меньшего основания провести прямую, параллельную боковой стороне?
Отрезки AK, BM, CN и DL делят квадрат ABCD со стороной 1 на четыре треугольника с площадями s1, s2, s3, s4 и пять четырёхугольников (см. рисунок). Площадь центрального четырёхугольника равна s0, причём s0 = s1 + s2 + s3 + s4. Докажите равенство:
AL + BK + CM + DN = 2.
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|