Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 993]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Хозяйка испекла квадратный торт и отрезала от него несколько кусков. Первый разрез проведён параллельно стороне исходного квадрата от края до края. Следующий разрез проведён в оставшейся части от края до края перпендикулярно предыдущему разрезу, далее аналогично (сколько-то раз). Все отрезанные куски имеют равную площадь. Может ли оставшаяся часть торта быть квадратом?
На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом.
На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Окружность $\omega_1$ проходит через вершину $A$ параллелограмма $ABCD$ и касается лучей $CB$, $CD$. Окружность $\omega_2$ касается лучей $AB$, $AD$ и касается внешним образом $\omega_1$ в точке $T$. Докажите, что $T$ лежит на диагонали $AC$.
Диагонали ромба ABCD пересекаются в точке O. Докажите, что
точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO
и DAO являются вершинами квадрата.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 993]