Страница:
<< 53 54 55 56 57
58 59 >> [Всего задач: 292]
|
|
Сложность: 5- Классы: 8,9,10
|
Окружности
S1
и
S2
с центрами
O1
и
O2
пересекаются в точках
A и
B (см рис.). Луч
O1
B
пересекает окружность
S2
в точке
F , а луч
O2
B
пересекает окружность
S1
в точке
E . Прямая, проходящая
через точку
B параллельно прямой
EF , вторично пересекает
окружности
S1
и
S2
в точках
M и
N соответственно.
Докажите, что
MN=AE+AF .
|
|
Сложность: 5- Классы: 9,10,11
|
В треугольнике
ABC на стороне
BC выбрана точка
M так, что
точка пересечения медиан треугольника
ABM лежит на описанной окружности треугольника
ACM , а
точка пересечения медиан треугольника
ACM лежит на описанной окружности треугольника
ABM .
Докажите, что медианы треугольников
ABM и
ACM из вершины
M равны.
|
|
Сложность: 5+ Классы: 10,11
|
Дана треугольная пирамида
ABCD . Сфера
S1 , проходящая через
точки
A ,
B ,
C , пересекает ребра
AD ,
BD ,
CD в точках
K ,
L ,
M соответственно;
сфера
S2 , проходящая через точки
A ,
B ,
D ,
пересекает ребра
AC ,
BC ,
DC в точках
P ,
Q ,
M соответственно.
Оказалось, что
KL|| PQ .
Докажите, что биссектрисы плоских углов
KMQ и
LMP совпадают.
|
|
Сложность: 3+ Классы: 8,9,10
|
Вневписанная окружность прямоугольного треугольника ABC (∠B = 90°) касается стороны BC в точке A1, а прямой AC в точке A2. Прямая A1A2 пересекает (первый раз) вписанную окружность треугольника ABC в точке A'; аналогично определяется точка C'. Докажите, что AC || A'C'.
Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.
Страница:
<< 53 54 55 56 57
58 59 >> [Всего задач: 292]