ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 350]      



Задача 58014

Тема:   [ Поворотная гомотетия ]
Сложность: 4+
Классы: 9

На прямоугольную карту положили карту той же местности, но меньшего масштаба. Докажите, что можно проткнуть иголкой сразу обе карты так, чтобы точка прокола изображала на обеих картах одну и ту же точку местности.
Прислать комментарий     Решение


Задача 58015

Тема:   [ Поворотная гомотетия ]
Сложность: 4+
Классы: 9

Поворотные гомотетии P1 и P2 с центрами A1 и A2 имеют один и тот же угол поворота, а произведение их коэффициентов равно 1. Докажите, что композиция P2oP1 является поворотом, причем его центр совпадает с центром другого поворота, переводящего A1 в A2 и имеющего угол поворота 2$ \angle$($ \overrightarrow{MA_1}$,$ \overrightarrow{MN}$), где M — произвольная точка и N = P1(M).
Прислать комментарий     Решение


Задача 58016

Тема:   [ Поворотная гомотетия ]
Сложность: 4+
Классы: 9

Треугольники MAB и MCD подобны, но имеют противоположные ориентации. Пусть O1 — центр поворота на угол 2$ \angle$($ \overrightarrow{AB}$,$ \overrightarrow{BM}$), переводящего A в C, а O2 — центр поворота на угол 2$ \angle$($ \overrightarrow{AB}$,$ \overrightarrow{AM}$), переводящего B в D. Докажите, что O1 = O2.
Прислать комментарий     Решение


Задача 67227

Темы:   [ Гомотетия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Трапеции (прочее) ]
Сложность: 4+
Классы: 9,10,11

Авторы: Mudgal A., Srivastava P.

В неравнобедренном треугольнике $ABC$ точка $M$ – середина $BC$, $P$ – ближайшая к $A$ точка пересечения луча $AM$ и вписанной окружности треугольника, $Q$ – дальняя от $A$ точка пересечения луча $AM$ и вневписанной окружности. Касательная к вписанной окружности в точке $P$ пересекает $BC$ в точке $X$, а касательная к вневписанной окружности в точке $Q$ пересекает $BC$ в точке $Y$. Докажите, что $MX=MY$.
Прислать комментарий     Решение


Задача 67344

Темы:   [ Гомотетичные многоугольники ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Бутырин Б.

В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 350]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .