Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 232]      



Задача 78033

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9

На окружности даны четыре точки A, B, C, D. Через каждую пару соседних точек проведена окружность. Вторые точки пересечения соседних окружностей обозначим через A1, B1, C1, D1. (Некоторые из них могут совпадать с прежними.) Доказать, что A1, B1, C1, D1 лежат на одной окружности.
Прислать комментарий     Решение


Задача 52399

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

AM — биссектриса треугольника ABC. Точка D принадлежит стороне AC, причём $ \angle$DMC = $ \angle$BAC. Докажите, что BM = MD.

Прислать комментарий     Решение


Задача 55394

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 8,9

Найдите площадь трапеции, у которой основания равны 10 и 26, а диагонали перпендикулярны боковым сторонам.

Прислать комментарий     Решение


Задача 67207

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.
Прислать комментарий     Решение


Задача 52452

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Точки A1 и B1 принадлежат сторонам соответственно OA и OB угла AOB, не равного 180o, и OA . OA1 = OB . OB1. Докажите, что точки A, B, A1, B1 принадлежат одной окружности.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 232]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .