Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 1235]
|
|
|
Сложность: 4- Классы: 9,10,11
|
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼.
|
|
|
Сложность: 4- Классы: 7,8,9
|
На доске записано целое число. Его последняя цифра запоминается, затем стирается и, умноженная на 5, прибавляется к тому числу, что осталось на доске после стирания. Первоначально было записано число 71998. Может ли после применения нескольких таких операций получиться число 19987?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Пусть
f(
x)
=x2+ax+b cos x . Найдите все значения параметров
a и
b , при которых уравнения
f(
x)
=0
и
f(
f(
x))
=0
имеют совпадающие непустые множества действительных корней.
|
|
|
Сложность: 4- Классы: 7,8,9
|
У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.
|
|
|
Сложность: 4- Классы: 7,8,9
|
Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 1235]