|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Подпольный миллионер Тарас Артёмов пришёл в Госбанк, чтобы обменять несколько 50- и 100-рублёвых купюр старого образца. Ему была выдана 1991 купюра более мелкого достоинства, причём среди них не было 10-рублёвых. Докажите, что его обсчитали. |
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1235]
Придумайте десятизначное число, в записи которого нет нулей, такое что при прибавлении к нему произведения его цифр получается число с таким же произведением цифр.
В клетках таблицы 3×3 расставлены числа так, что сумма чисел в каждом столбце и в каждой строке равна нулю. Какое наименьшее количество чисел, отличных от нуля, может быть в этой таблице, если известно, что оно нечётно?
Является ли число 49 + 610 + 320 простым?
а) Однажды одним из написанных чисел (каким неизвестно) оказалось 941664/665857. Каким в этот момент было другое число? б) Будет ли когда-нибудь написано число 35/24?
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1235] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|