Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 257]      



Задача 65738

Темы:   [ Окружности на сфере ]
[ Правильные многогранники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях:  а)  N = 3;  б)  N = 4.
Прислать комментарий     Решение


Задача 98098

Темы:   [ Окружности на сфере ]
[ Отношение эквивалентности. Классы эквивалентности ]
[ Системы отрезков, прямых и окружностей ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 10,11

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

Прислать комментарий     Решение

Задача 111728

Темы:   [ Пересекающиеся сферы ]
[ Пересекающиеся окружности ]
[ Диаметр, основные свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4+
Классы: 10,11

В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.

Прислать комментарий     Решение

Задача 79298

Темы:   [ Сфера, касающаяся ребер угла ]
[ Примеры и контрпримеры. Конструкции ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4+
Классы: 9,10,11

Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров?
Прислать комментарий     Решение


Задача 79625

Темы:   [ Сферическая геометрия и телесные углы ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 5-
Классы: 10,11

Аладдин побывал во всех точках экватора, двигаясь то на восток, то на запад, а иногда мгновенно перемещаясь в диаметрально противоположную точку Земли. Докажите, что был отрезок времени, за которое разность расстояний, пройденных Аладдином на восток и на запад, не меньше половины длины экватора.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .