Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]
|
|
Сложность: 4 Классы: 10,11
|
У тетраэдра ABCD сумма площадей двух граней (с общим ребром AB) равна сумме площадей оставшихся граней (с общим ребром CD). Докажите, что середины рёбер BC, AD, AC и BD лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр ABCD.
|
|
Сложность: 5 Классы: 10,11
|
В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1; A2 – точка пересечения прямой A1I с плоскостью B1C1D1; B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.
|
|
Сложность: 5- Классы: 9,10
|
Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что MI = r/3 тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]