ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 102351

Темы:   [ Две пары подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Теоремы Чевы и Менелая ]
[ Центр масс ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC взяты точка N на стороне AB, а точка M – на стороне AC. Отрезки CN и BM пересекаются в точке O,  AN : NB = 2 : 3,  BO : OM = 5 : 2.
Найдите  CO : ON.

Прислать комментарий     Решение

Задача 116356

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Центр масс ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9,10

На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём  BA1 : A1C = CB1 : B1A = AC1 : C1B = 1 : 3.  Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Задача 53856

 [Теорема Чевы]
Темы:   [ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9

Пусть точки A1, B1 и C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC.
Докажите, что отрезки AA1, BB1, CC1 пересекаются в одной точке тогда и только тогда, когда  

Прислать комментарий     Решение

Задача 55373

Темы:   [ Поворот помогает решить задачу ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9,10

Пусть О – центр правильного многоугольника A1A2A3...AnX – произвольная точка плоскости. Докажите, что:
   a)  


   б)   

Прислать комментарий     Решение

Задача 102352

Темы:   [ Две пары подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Теоремы Чевы и Менелая ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9

В треугольнике KLM взяты точка A на стороне LM, а точка B – на стороне KM. Отрезки KA и LB пересекаются в точке O,  LA : AM = 3 : 4,  KO : OA = 3 : 2.
Найдите  LO : OB.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .