Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 245]
|
|
Сложность: 3+ Классы: 9,10,11
|
Верно ли, что в любом треугольнике точка пересечения медиан лежит внутри треугольника, образованного основаниями биссектрис?
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены медиана AM, биссектриса AL и высота AH (H лежит между L и B). При этом ML = LH = HB.
Найдите отношение сторон треугольника ABC.
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике ABC высота и медиана, проведённые из вершины A, образуют (вместе с прямой BC) треугольник, в котором биссектриса угла A является медианой, а высота и медиана, проведённые из вершины B, образуют (вместе с прямой AC) треугольник, в котором биссектриса угла B является биссектрисой. Найдите отношение сторон треугольника ABC.
В треугольнике ABC AB = c, AC = b > c, AD – биссектриса. Через точку D проведена прямая, перпендикулярная AD
и пересекающая AC в точке E.
Найдите AE.
Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника
продолжены до пересечения с продолжениями сторон.
Докажите, что одна из трёх полученных точек есть середина отрезка, соединяющего две другие.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 245]