ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 246]      



Задача 55013

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Отношения площадей ]
Сложность: 4-
Классы: 8,9

В параллелограмме ABCD точка E делит пополам сторону CD, биссектриса угла ABC пересекает в точке O отрезок AE. Найдите площадь четырёхугольника OBCE, зная, что AD = a, DE = b, $ \angle$ABO = $ \alpha$.

Прислать комментарий     Решение


Задача 53268

Темы:   [ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Точка O делит отрезок AB на отрезки OA = 6 и OB = 4. С центром в точке O проведена окружность, из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, если OM = 12.

Прислать комментарий     Решение


Задача 55008

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) проведена биссектриса AD. Площади треугольников ABD и ADC равны соответственно S1 и S2. Найдите AC.

Прислать комментарий     Решение


Задача 102277

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9

Биссектриса угла A треугольника ABC пересекает сторону BC в точке D. Окружность радиуса 35, центр которой лежит на прямой BC, проходит через точки A и D. Известно, что   AB² – AC² = 216,  а площадь треугольника ABC равна 90. Найдите радиус описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 102278

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9

Биссектриса угла A треугольника ABC пересекает сторону BC в точке D. Точка E лежит на прямой BC, причём угол DAE – прямой. Известно, что
AB² – AC² = 640,  DE = 198,  а радиус описанной окружности треугольника ABC равен 66. Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 246]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .