ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 245]      



Задача 111042

Темы:   [ Описанные четырехугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 9,10,11

Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

Прислать комментарий     Решение

Задача 55247

Темы:   [ Неравенства с биссектрисами ]
[ Отношение, в котором биссектриса делит сторону ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 8,9,10

Две стороны треугольника равны 10 и 15. Докажите, что биссектриса угла между ними не больше 12.

Прислать комментарий     Решение


Задача 55321

Темы:   [ Теорема косинусов ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

В трапеции ABCD основание AD равно $ \sqrt{7}$. Диагонали AC и DB пересекаются в точке K. Известно, что AK = 1, KD = 2, $ \angle$BAC = $ \angle$DAC. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 53896

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Через точку пересечения биссектрисы угла A треугольника ABC и отрезка, соединяющего основания двух других биссектрис, проведена прямая, параллельная стороне BC. Докажите, что меньшее основание образовавшейся трапеции равно полусумме её боковых сторон.

Прислать комментарий     Решение

Задача 54034

Темы:   [ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

BD — биссектриса треугольника ABC, причём AD > CD. Докажите, что AB > BC.

Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 245]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .