Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 41]
|
|
Сложность: 6+ Классы: 10,11
|
В треугольной пирамиде все 4 грани имеют одинаковую площадь. Докажите, что они
равны.
|
|
Сложность: 3 Классы: 10,11
|
Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6?
Углы, образованные сторонами правильного треугольника с некоторой плоскостью,
равны α, β и γ. Доказать, что одно из чисел sin α,
sin β, sin γ равно сумме двух других.
Существует ли такой выпуклый 1976-гранник, который обладал бы следующим
свойством: при произвольной расстановке стрелок на концах его рёбер сумма
полученных векторов отлична от 0?
|
|
Сложность: 4- Классы: 10,11
|
Дан куб АBCDA'B'C'D' c ребром 1. На его рёбрах АВ, ВС, C'D' и D'A' отмечены точки K, L, M и N соответственно так, что KLMN – квадрат.
Найдите его площадь.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 41]