ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите,
что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB
пересекаются в одной точке (Штейнер).
Докажите, что abc = 4prR и
ab + bc + ca = r2 + p2 + 4rR.
Внутри выпуклого четырехугольника ABCD построены равнобедренные
прямоугольные треугольники ABO1, BCO2, CDO3
и DAO4. Докажите, что если O1 = O3, то O2 = O4.
Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.
Плоскость раскрашена в семь цветов. Обязательно
ли найдутся две точки одного цвета, расстояние между
которыми равно 1?
Докажите, что для любого n существует окружность, внутри которой
лежит ровно n целочисленных точек.
Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними. На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
Пусть стороны самопересекающихся
четырехугольников KLMN и K'L'M'N', вписанных в одну и ту же окружность,
пересекают хорду AB этой окружности в точках P, Q, R, S и
P', Q', R', S'
соответственно (сторона KL — в точке P, LM — в точке Q,
и т. д.). Докажите, что если три из точек P, Q, R, S совпадают с
соответственными тремя из точек
P', Q', R', S', то и оставшиеся две точки тоже
совпадают. (Предполагается, что хорда AB не проходит через вершины
четырехугольников.)
Ось симметрии многоугольника пересекает его стороны
в точках A и B. Докажите, что точка A является либо
вершиной многоугольника, либо серединой стороны, перпендикулярной
оси симметрии.
Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности. |
Задача 108678
УсловиеОкружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности. РешениеОбозначим углы треугольника ABC через α, β и γ соответственно. Поскольку BO – биссектриса внешнего угла при вершине B треугольника ABC, а AO – биссектриса угла BAC, то ∠AOB = 180° – ∠BAO – ∠ABO = 180° – α/2 – (β + ½ (α + γ)) = γ – γ/2 = γ/2. Поскольку ADB – центральный угол окружности, проходящей через точки A, B и O, а AOB – угол, вписанный в эту окружность, то ∠ADB = 2∠AOB = γ = ∠ACB. Замечания4 балла Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке