Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?

Вниз   Решение


На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a .

ВверхВниз   Решение


Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

ВверхВниз   Решение


В вершинах A , B и C равностороннего треугольника ABC со стороной 1 восставлены к его плоскости перпендикуляры и на них взяты точки A1 , B1 и C1 , находящиеся по одну сторону от плоскости ABC , причём AA1 = 4 , BB1 = 5 и CC1 = 6 . Найдите объём многогранника ABCA1B1C1 .

ВверхВниз   Решение


На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения n, при которых это возможно.

ВверхВниз   Решение


В треугольниках АВС и A1B1C1:  ∠А = ∠А1,  равны высоты, проведённые из вершин В и В1, а также равны медианы, проведённые из вершин С и С1. Обязательно ли эти треугольники равны?

ВверхВниз   Решение


На гранях кубика расставлены числа от 1 до 6. Кубик бросили два раза. В первый раз сумма чисел на четырёх боковых гранях оказалась равна 12, во второй — 15. Какое число написано на грани, противоположной той, где написана цифра 3?

ВверхВниз   Решение


Автор: Ивлев Б.М.

Пусть ABC – остроугольный треугольник, CC1 – его биссектриса, O – центр описанной окружности. Точка пересечения прямой OC1 с перпендикуляром, опущенным из вершины C на сторону AB, лежит на описанной окружности Ω треугольника AOB. Найдите угол C.

ВверхВниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


Автор: Фольклор

Внутри квадрата ABCD лежит квадрат PQRS. Отрезки AP, BQ, CR и DS не пересекают друг друга и стороны квадрата PQRS.
Докажите, что сумма площадей четырёхугольников ABQP и CDSR равна сумме площадей четырёхугольников BCRQ и DAPS.

ВверхВниз   Решение


У Юры есть калькулятор, который позволяет умножать число на 3, прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3. Как на этом калькуляторе получить из числа 1 число 11?

ВверхВниз   Решение


а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.

б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.

ВверхВниз   Решение


Автор: Шевяков В.

Дан выпуклый четырёхугольник. Если провести в нём любую диагональ, он разделится на два равнобедренных треугольника. А если провести в нём обе диагонали сразу, он разделится на четыре равнобедренных треугольника. Обязательно ли этот четырёхугольник – квадрат?

ВверхВниз   Решение


B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.

ВверхВниз   Решение


Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.

ВверхВниз   Решение


В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из n человек, команда математических – из m, причём  nm.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

ВверхВниз   Решение


Среди любых десяти из шестидесяти школьников найдётся три одноклассника. Обязательно ли среди всех шестидесяти школьников найдётся
  а) 15 одноклассников;
  б) 16 одноклассников?

ВверхВниз   Решение


На стороне AC треугольника ABC отметили точку E. Известно, что периметр треугольника ABC равен 25 см, периметр треугольника ABE равен 15 см, а периметр треугольника BCE – 17 см. Найдите длину отрезка BE.

ВверхВниз   Решение


Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

ВверхВниз   Решение


Четырёхугольник ABCD является одновременно и вписанным, и описанным, причём вписанная в ABCD окружность касается его сторон AB, BC, CD и AD в точках K, L, M, N соответственно. Биссектрисы внешних углов A и B четырёхугольника пересекаются в точке K', внешних углов B и C – в точке L', внешних углов C и D – в точке M', внешних углов D и A – в точке N'. Докажите, что прямые KK', LL', MM' и NN' проходят через одну точку.

ВверхВниз   Решение


В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
  а) за 5 или менее;
  б) за 4 или менее;
  в) за 3 или менее таких перегибания?

ВверхВниз   Решение


Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются.

Вверх   Решение

Задача 116224
Темы:    [ Параллелепипеды (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 4
Классы: 10
Из корзины
Прислать комментарий

Условие

Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются.


Решение

Первое решение. Докажем, что это верно для разбиения любого прямоугольного параллелепипеда. Для краткости будем называть объемлющий параллелепипед ящиком, три его непараллельные грани — левой низом и фасадом, параллелепипеды разбиения — кирпичами, а разбиения, удовлетворяющие условию задачи, — правильными.

Лемма. Если разрезать ящик и кирпичи плоскостью, параллельной грани, то получим два меньших правильно разбитых ящика.

Доказательство. Если проекции двух кирпичей перекрывались на грани, параллельной разрезу, то проекции их кусков, попавших в один меньший ящик, не меняются и поэтому перекрываются. В противном случае пересечение проекций либо (а) было разбито разрезом, либо (б) было пустым. В случае (а) проекции кусков кирпичей перекрываются по соответствующей части пересечения проекций. В случае (б) один из кирпичей целиком попадает в один меньший ящик и перекрытие его проекции с проекцией соответствующего куска другого кирпича не меняется.

Вернёмся к задаче. Допустим, что утверждение ложно. Тогда есть контрпример, и в нём найдутся такие три кирпича X, Y и Z, что у X и Y перекрываются проекции на низ, у X и Z — на левую грань, у Y и Z — на фасад. Выберем контрпример с наименьшим числом кирпичей. Допустим, что X и Y не соприкасаются. Можно считать, что Y выше X. Рассмотрим часть ящика в форме параллелепипеда между нижней гранью Y и верхней гранью X, проекция которой на низ совпадает с пересечением проекций X и Y . Эта часть не входит ни в X, ни в Y , ни в Z. Она принадлежит одному или нескольким кирпичам; пусть K — один из них. Посмотрим, на какой грани перекрываются проекции K и Z: на левой или на фасаде (низ, очевидно, не подходит). Если на левой, то K, Y и Z тоже служат контрпримером. Разрежем ящик плоскостью, проходящей по верхней грани X. В верхнем из получившихся ящиков лежат K, Y и часть Z, образуя контрпример. Но так как в этом ящике нет ни одной части от X, то в верхнем ящике кирпичей меньше, что противоречит минимальности контрпримера. Аналогично, если бы проекции K и Z перекрывались на фасаде, можно было бы получить меньший контрпример, отсекая верхнюю часть с Y .

Итак, X и Y соприкасаются, и, по аналогичным причинам, соприкасаются X c Z и Y c Z. Пусть M — общая точка X, Y и Z. Ими не покрыты два противоположно направленных октанта с вершиной M, и кирпичи из этих октантов не могут иметь перекрывающихся проекций — противоречие.

Второе решение (предложено участником олимпиады Александром Скутиным). Введём систему координат с началом в вершине куба и осями, параллельными его рёбрам. Вместо проекций на грани будем рассматривать проекции на координатные плоскости (назовём их нижней, передней и левой).

Заметим, что грани всех параллелепипедов должны быть параллельны координатным плоскостям. Заметим также, что два параллелепипеда могут перекрываться в проекции не более чем на одну плоскость: если они перекрываются хотя бы на двух, то перекрываются проекции на все три оси, а тогда перекрываются и сами параллелепипеды.

Предположим, что найдутся три параллелепипеда A, B и C, нарушающие требование задачи. Тогда для каждой из трёх пар найдётся своя плоскость, проекции на которую будут перекрываться. Пусть a — расстояние между параллелепипедами B и C вдоль оси, перпендикулярной соответствующей плоскости, аналогично b — расстояние между A и C, c — расстояние между A и B. Среди всех троек, нарушающих требование задачи, возьмём одну из тех, где a + b + c минимально.

Случай 1: a + b + c = 0 (см. рис. а). Тогда a = b = c = 0 и у всех трёх параллелепипедов есть общая точка. Из этой точки выходят два противоположных октанта, не покрытых параллелепипедами A, B и C. Значит, они покрыты какими-то другими параллелепипедами D и E. Но эти параллелепипеды должны целиком лежать в своих октантах, а проекции октантов ни на одну плоскость не перекрываются. Значит, то же верно и для D и E, что противоречит условию.

Случай 2: a + b + c > 0 (см. рис. б). Предположим для определённости, что a > 0, B находится левее C, C находится ниже A и A находится дальше B. Рассмотрим все параллелепипеды, лежащие между B и C и перекрывающиеся с ними в проекции на левую плоскость. Среди них обязательно найдётся параллелепипед F, у которого верхняя грань не ниже верхней грани C, а дальняя — не ближе дальней грани B. Если F перекрывается с A в проекции на нижнюю плоскость, то рассмотрим тройку (A, B, F), если на переднюю — тройку (A,F,C). В любом случае получим тройку, нарушающую условие задачи, с меньшей суммой a + b + c: по одному измерению расстояние не изменилось, по другому не увеличилось, по третьему уменьшилось, — а это противоречит изначальному выбору тройки.

В обоих случаях мы приходим к противоречию, следовательно, искомой тройки параллелепипедов не существует.

Рис. а Рис. б

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2011
Номер 74
класс
1
Класс 10
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .