ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Клетки бумажного квадрата 8×8 раскрашены в два цвета. Докажите, что Арсений может вырезать из него по линиям сетки два квадрата 2×2, не имеющих общих клеток, раскраски которых совпадают. (Раскраски, отличающиеся поворотом, считаются разными.) Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD. В треугольнике ABC (a>b>c) указаны инцентр I, а также точки K и N касания вписанной окружности со сторонами BC и AC соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины a−c. Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты? Биссектриса угла A треугольника ABC при продолжении пересекает описанную около него окружность ω в точке W. Окружность s, построенная на отрезке AH как на диаметре (H – ортоцентр в треугольнике ABC), пересекает ω в точке P. Восстановите треугольник ABC, если остались точки A, P, W. В треугольнике ABC AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что AE = ED. Найдите угол DAC. Около прямоугольника ABCD описана окружность. На меньшей дуге BC окружности взята произвольная точка E. К окружности проведена касательная в точке B, пересекающая прямую CE в точке G. Отрезки AE и BD пересекаются в точке K. Докажите, что прямые GK и AD перпендикулярны. Постройте треугольник ABC по вершине A, центру описанной окружности O и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах AB и AC равные отрезки от вершины A. Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80. В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. На отрезках AD и CD построены равносторонние треугольники AED и CFD, так что точка E лежит в той же полуплоскости относительно прямой AB, что и C, а точка F лежит в той же полуплоскости относительно прямой CD, что и B. Прямая EF пересекает катет AC в точке L. Докажите, что FL=CL+LD. В треугольнике ABC биссектриса AL, серединный перпендикуляр к стороне AB и высота BK пересекаются в одной точке. Докажите, что биссектриса AL, серединный перпендикуляр к AC и высота CH, также пересекаются в одной точке. Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что KS || AC и LT || AB. Докажите, что точки P, Q, S и T лежат на одной окружности. Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2? Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан? На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что AK = KN = DN и BL = BC = CM. Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан. Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC. Фиксированы окружность, точка A на ней и точка K вне окружности. Секущая, проходящая через K, пересекает окружность в точках P и Q. Докажите, что ортоцентры треугольников APQ лежат на фиксированной окружности. Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy – в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy – в точке D. (O – начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны. |
Задача 32897
УсловиеДаны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy – в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy – в точке D. (O – начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны. РешениеОбозначим координаты точек: M(x0, 0), A(x1, 0), B(x2, 0). Корни первого трёхчлена равны x0 и x1, корни второго равны x0 и x2. Ордината точки C равна свободному члену первого трёхчлена, то есть x0x1. Аналогично, ордината точки D равна x0x2. Поэтому отношения катетов OC : OA и OD : OB прямоугольных треугольников AOC и BOD равны x0; следовательно, они подобны. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке