Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 18 задач
Версия для печати
Убрать все задачи

Клетки бумажного квадрата 8×8 раскрашены в два цвета. Докажите, что Арсений может вырезать из него по линиям сетки два квадрата 2×2, не имеющих общих клеток, раскраски которых совпадают. (Раскраски, отличающиеся поворотом, считаются разными.)

Вниз   Решение


Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD.

ВверхВниз   Решение


В треугольнике ABC (a>b>c) указаны инцентр I, а также точки K и N касания вписанной окружности со сторонами BC и AC соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины ac.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

ВверхВниз   Решение


Биссектриса угла A треугольника ABC при продолжении пересекает описанную около него окружность ω в точке W. Окружность s, построенная на отрезке AH как на диаметре (H – ортоцентр в треугольнике ABC), пересекает ω в точке P. Восстановите треугольник ABC, если остались точки A, P, W.

ВверхВниз   Решение


В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.

ВверхВниз   Решение


Около прямоугольника ABCD описана окружность. На меньшей дуге BC окружности взята произвольная точка E. К окружности проведена касательная в точке B, пересекающая прямую CE в точке G. Отрезки AE и BD пересекаются в точке K. Докажите, что прямые GK и AD перпендикулярны.

ВверхВниз   Решение


Постройте треугольник ABC по вершине A, центру описанной окружности O и прямой Эйлера, если известно, что прямая Эйлера отсекает на сторонах AB и AC равные отрезки от вершины A.

ВверхВниз   Решение


Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.

ВверхВниз   Решение


В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. На отрезках AD и CD построены равносторонние треугольники AED и CFD, так что точка E лежит в той же полуплоскости относительно прямой AB, что и C, а точка F лежит в той же полуплоскости относительно прямой CD, что и B. Прямая EF пересекает катет AC в точке L. Докажите, что FL=CL+LD.

ВверхВниз   Решение


В треугольнике ABC биссектриса AL, серединный перпендикуляр к стороне AB и высота BK пересекаются в одной точке. Докажите, что биссектриса AL, серединный перпендикуляр к AC и высота CH, также пересекаются в одной точке.

ВверхВниз   Решение


Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что  KS || AC  и  LT || AB.  Докажите, что точки P, Q, S и T лежат на одной окружности.

ВверхВниз   Решение


Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2?

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

ВверхВниз   Решение


На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

ВверхВниз   Решение


Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC.

ВверхВниз   Решение


 Фиксированы окружность, точка A на ней и точка K вне окружности. Секущая, проходящая через K, пересекает окружность в точках P и Q. Докажите, что ортоцентры треугольников APQ лежат на фиксированной окружности.

ВверхВниз   Решение


Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy – в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy – в точке D. (O – начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны.

Вверх   Решение

Задача 32897
Темы:    [ Квадратные уравнения. Теорема Виета ]
[ Прямые и плоскости в пространстве ]
Сложность: 3-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy – в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy – в точке D. (O – начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны.


Решение

Обозначим координаты точек:  M(x0, 0),  A(x1, 0),  B(x2, 0).  Корни первого трёхчлена равны x0 и x1, корни второго равны x0 и x2. Ордината точки C равна свободному члену первого трёхчлена, то есть x0x1. Аналогично, ордината точки D равна x0x2. Поэтому отношения катетов  OC : OA  и  OD : OB  прямоугольных треугольников AOC и BOD равны x0; следовательно, они подобны.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2013
Номер 76
класс
Класс 10
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .