Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.

Вниз   Решение


К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.

ВверхВниз   Решение


Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).

ВверхВниз   Решение


Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна.

ВверхВниз   Решение


Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.

ВверхВниз   Решение


В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.

ВверхВниз   Решение


В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении.
Доказать, что сумма всех чисел в таблице равна единице, или все числа равны нулю.

ВверхВниз   Решение


На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Докажите, что  SABCD ≥ 3SBCM.

ВверхВниз   Решение


Точки M, N, K – середины рёбер соответственно AB, BC, DD1 параллелепипеда ABCDA1B1C1D1.
  а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
  б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
  в) В каком отношении эта плоскость делит объём параллелепипеда?

ВверхВниз   Решение


За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?

ВверхВниз   Решение


а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

Вверх   Решение

Задача 56934
Темы:    [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Прямая Симсона ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9
Название задачи: Прямая Симсона.
Из корзины
Прислать комментарий

Условие

а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.


Решение

  Пусть A1, B1 и C1 – основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB.

  а) Пусть точка P лежит на дуге AC описанной окружности треугольника ABC. Сумма углов при вершинах A1 и C1 четырёхугольника A1BC1P равна 180°, поэтому  ∠ A1PC1 = 180° – ∠B = ∠APC.  Следовательно,  ∠APC1 = ∠A1PC,  причём одна из точек A1 и C1 (например, A1) лежит на стороне треугольника, а другая – на продолжении стороны. Четырёхугольники AB1PC1 и A1B1PC вписанные, поэтому
AB1C1 = ∠APC1 = ∠A1PC = ∠A1B1C,  а значит, точка B1 лежит на отрезке A1C1.

  б) Первый способ. Воспользуемся ориентированными углами (см. главу 2 книги В.В. Прасолова "Задачи по планиметрии"). Как и в а), получаем
∠(AP, PC1) = ∠(AB1, B1C) = ∠(CB1, B1A1) = ∠(CP, PA1).  Прибавляя  ∠(PC1, PC),  получаем  ∠(AP, PC) = ∠(PC1, PA1) = ∠(BC1, BA1) = ∠(AB, PC),  то есть точка P лежит на описанной окружности треугольника ABC.
  Второй способ. Рассмотрим гомотетию с центром в точке A, при которой описанная окружность Ω треугольника ABC перейдет в окружность Ω', проходящую через точку P. Треугольник ABC перейдет в треугольник AB'C', вписанный в Ω'. Основания перпендикуляров, опущенных из точки P на стороны AB', AC' треугольника AB'C', – те же точки C1 и B1. Пусть A2 – основание перпендикуляра, опущенного из P на B'C'. Согласно а) точки C1, B1 и A2 лежат на одной прямой. Значит, прямая C1B1 пересекает прямую PA1 как в точке A1, так и в точке A2. Следовательно точки A1 и A2 совпадают. Тогда совпадают и прямые AB и A'B', то есть коэффициент гомотетии равен 1, и Ω' совпадает с Ω.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 9
Название Прямая Симсона
Тема Прямая Симсона
задача
Номер 05.085

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .