Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$.

Вниз   Решение


У многочленов Р(х) и Q(х) – один и тот же набор целых коэффициентов (их порядок – различен).
Докажите, что разность  Р(2015) – Q(2015)  кратна 1007.

ВверхВниз   Решение


Две равные окружности касаются друг друга. Постройте такую трапецию, что каждая из окружностей касается трёх её сторон, а центры окружностей лежат на диагоналях трапеции.

ВверхВниз   Решение


В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.

ВверхВниз   Решение


Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Докажите, что периметр треугольника DEF в два раза больше стороны BC.

ВверхВниз   Решение


Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.

ВверхВниз   Решение


Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. ( Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника.)

ВверхВниз   Решение


Числовая последовательность {xn} такова, что для каждого  n > 1  выполняется условие:  xn+1 = |xn| – xn–1.
Докажите, что последовательность периодическая с периодом 9.

ВверхВниз   Решение


Четырёхугольная пирамида SABCD вписана в сферу. Основание этой пирамиды – прямоугольник ABCD . Известно, что AS = 7 , BS = 2 , CS =6 , SAD = SBD = SCD . Найдите ребро DS .

ВверхВниз   Решение


Можно ли разрезать правильный треугольник на 1000000 выпуклых многоугольников так, чтобы любая прямая имела общие точки не более чем с 40 из них?

ВверхВниз   Решение


n – натуральное число. Докажите, что  

ВверхВниз   Решение


Докажите, что для любого натурального n, где n$ \ge$6, квадрат можно разрезать на n квадратов.

ВверхВниз   Решение


Докажите, что семиугольник нельзя разрезать на выпуклые шестиугольники.

Вверх   Решение

Задача 58256
Тема:    [ Разные задачи на разрезания ]
Сложность: 6
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Докажите, что семиугольник нельзя разрезать на выпуклые шестиугольники.

Решение

Предположим, что семиугольник разрезан на f выпуклых шестиугольников. С одной стороны, сумма углов этих шестиугольников равна 4$ \pi$f. С другой стороны, она равна (7 - 2)$ \pi$ + (m - 7)$ \pi$ + 2n$ \pi$, где m — количество вершин шестиугольников, лежащих на сторонах семиугольника, n — количество вершин шестиугольников, лежащих внутри семиугольника. Таким образом,

4f = m - 2 + 2n.1)


Пусть k — количество сторон шестиугольников, лежащих внутри семиугольника, m1 — количество тех из m вершин, из которых выходят ровно две стороны, m2 = m - m1. Тогда 6f = m + 2k и 2k$ \ge$3n + m2, поэтому

6f$\displaystyle \ge$3n + m2 + m.2)

Из (1) и (2) следует, что m - 2m2$ \ge$6, т.е. m1 - m2$ \ge$6.
Ясно, что m2$ \ge$2, поскольку по крайней мере из двух точек на сторонах семиугольника выходят отрезки, идущие внутрь. Следовательно, m1$ \ge$8. Приходим к противоречию, поскольку ровно две стороны могут выходить только из вершин семиугольника.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 25
Название Разрезания, разбиения, покрытия
Тема Разрезания, разбиения, покрытия и замощения
параграф
Номер 6
Название Разные задачи на разрезания
Тема Разные задачи на разрезания
задача
Номер 25.035B

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .