Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Товарный поезд, отправившись из Москвы в x часов y минут, прибыл в Саратов в y часов z минут. Время в пути составило z часов x минут.
Найдите все возможные значения x.

Вниз   Решение


В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).

ВверхВниз   Решение


В треугольнике ABC угол С в три раза больше угла A. На стороне AB взята такая точка D, что  BD = BC.  Найдите CD, если  AD = 4.

ВверхВниз   Решение


На доске записано 101 число: 1², 2², ..., 101². За одну операцию разрешается стереть любые два числа, а вместо них записать модуль их разности.
Какое наименьшее число может получиться в результате 100 операций?

ВверхВниз   Решение


Найдите такие линейные функции  P(x)  и  Q(x),  чтобы выполнялось равенство   P(x)(2x³ – 7x² + 7x – 2) + Q(x)(2x³ + x² + x – 1) = 2x – 1.

ВверхВниз   Решение


В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.

ВверхВниз   Решение


Пользуясь схемой Горнера, разложите  x4 + 2x3 – 3x2 – 4x + 1  по степеням  x + 1.

ВверхВниз   Решение


Значение многочлена  Pn(x) = anxn + an–1xn–1 + ... + a1x + a0    (an ≠ 0)  в точке  x = c  можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде  Pn(x) = (...(anx + an–1)x + ... + a1)x + a0.   Пусть  bn, bn–1, ..., b0  – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть  bn = anbk = cbk+1 + ak  (k = n – 1, ..., 0).  Докажите, что при делении многочлена Pn(x) на  x – c  с остатком, у многочлена в частном коэффициенты будут совпадать с числами  bn–1, ..., b1,  а остатком будет число b0. Таким образом, будет справедливо равенство:
Pn(x) = (x – c)(bnxn–1 + ... + b2x + b1) + b0.

ВверхВниз   Решение


Автор: Сонкин М.

Пусть O – центр описанной окружности ω остроугольного треугольника ABC. Окружность ω1 с центром K проходит через точки A, O и C и пересекает стороны AB и BC в точках M и N. Известно, что точки L и K симметричны относительно прямой MN. Докажите, что  BLAC.

ВверхВниз   Решение


Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

ВверхВниз   Решение


Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

ВверхВниз   Решение


При помощи метода неопределенных коэффициентов найдите такие линейные функции P(x) и Q(x), чтобы выполнялось равенство
P(x)(x² – 3x + 2) + Q(x)(x² + x + 1) = 21.

Вверх   Решение

Задача 60997
Темы:    [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

При помощи метода неопределенных коэффициентов найдите такие линейные функции P(x) и Q(x), чтобы выполнялось равенство
P(x)(x² – 3x + 2) + Q(x)(x² + x + 1) = 21.


Ответ

P(x) = 4x + 5,   Q(x) = – 4x + 11.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 6
Название Многочлены
Тема Многочлены
параграф
Номер 2
Название Алгоритм Евклида для многочленов и теорема Безу.
Тема Теорема Безу. Разложение на множители
задача
Номер 06.074

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .