Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 16 задач
Версия для печати
Убрать все задачи

В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых).

Вниз   Решение


В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

ВверхВниз   Решение


Пять друзей подошли к реке и обнаружили на берегу лодку, в которой могут поместиться все пятеро. Они решили покататься на лодке. Каждый раз с одного берега на другой переправляется компания из одного или нескольких человек. Друзья хотят организовать катание так, чтобы каждая возможная компания переправилась ровно один раз. Получится ли у них это сделать?

ВверхВниз   Решение


Диагональ боковой грани правильной треугольной призмы, равная 6, составляет угол 30o с плоскостью другой боковой грани. Найдите объём призмы.

ВверхВниз   Решение


В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми.

ВверхВниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =2 , AD = 4 , BB1 = 12 . Точки M и K расположены на рёбрах CC1 и AD соответственно, причём CM:MC1 = 1:2 , AK = KD . Найдите угол между прямыми AM и KB1 .

ВверхВниз   Решение


В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды.

ВверхВниз   Решение


На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.

ВверхВниз   Решение


Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.

ВверхВниз   Решение


На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL .

ВверхВниз   Решение


Игра ``Ним''. Имеется несколько кучек камней. Двое по очереди берут из них камни. За один ход разрешается взять любое (ненулевое) количество камней, но только из одной кучки. Выигрывает тот, кто взял последний камень. Для анализа игры каждому набору кучек камней m1, m2, ..., ml поставим в соответствие его ним сумму (5.1 ).
а) Докажите, что если игрок делает ход из позиции с нулевой ним-суммой, то в результате получается позиция с ним-суммой n$ \ne$ 0.
б) Докажите, что из позиции с ненулевой ним-суммой всегда можно сделать ход в позицию с ним-суммой n = 0.
в) Опишите выигрышную стратегию в игру ``Ним''.
г) Какой следует сделать ход, если перед вами три кучки: 3, 4 и 5 камней?

ВверхВниз   Решение


Вводится сначала число N, а затем N чисел. Выведите эти N чисел
в следующем порядке: сначала выводятся числа, стоящие на нечетных местах,
а затем - стоящие на четных местах.

Входные данные
Вводится число N (0<N<100), а затем N чисел из диапазона Integer.


Пример входного файла
7
2 4 1 3 5 3 1

Пример выходного файла
2 1 5 1 4 3 3

ВверхВниз   Решение


Медианы AA0, BB0 и CC0 остроугольного треугольника ABC пересекаются в точке M, а высоты AA1, BB1 и CC1 – в точке H. Касательная к описанной окружности треугольника A1B1C1 в точке C1 пересекает прямую A0B0 в точке C'. Точки A' и B' определяются аналогично. Докажите, что A', B' и C' лежат на одной прямой, перпендикулярной прямой MH.

ВверхВниз   Решение


Даны точки A(-3;0;1) , B(2;1;-1) , C(-2;2;0) и D(1;3;2) . Найдите угол между прямыми AB и CD .

ВверхВниз   Решение


Имеет ли отрицательные корни уравнение   x4 – 4x³ – 6x² – 3x + 9 = 0?

ВверхВниз   Решение


Автор: Ивлев Ф.

В остроугольном треугольнике ABC проведены высоты AP и BQ, а также медиана CM. Точка R – середина CM. Прямая PQ пересекает прямую AB в точке T. Докажите, что  ORTC,  где O – центр описанной окружности треугольника ABC.

Вверх   Решение

Задача 64342
Темы:    [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Радикальная ось ]
[ Вписанные и описанные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4+
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Автор: Ивлев Ф.

В остроугольном треугольнике ABC проведены высоты AP и BQ, а также медиана CM. Точка R – середина CM. Прямая PQ пересекает прямую AB в точке T. Докажите, что  ORTC,  где O – центр описанной окружности треугольника ABC.


Решение 1

  Пусть H – ортоцентр треугольника, O1 – середина CH (см. рис.).
  OM || CH  и, как известно,  OM = ½ CH = O1C  (см. например, решение задачи 55595). Значит, MOCO1 – параллелограмм, а R – точка пересечения его диагоналей, то есть – середина отрезка OO1.

  Рассмотрим описанные окружности Ω и Ω1 треугольников ABC и PQC, а также окружность Ω2 с диаметром AB. Заметим, что AB – радикальная ось Ω и Ω1, а PQ – радикальная ось Ω1 и Ω2. Эти радикальные оси пересекаются в точке T – радикальном центре этих трёх окружностей. Следовательно CT – радикальная ось Ω и Ω1 и перпендикулярна их линии центров OO1, что и требовалось.


Решение 2

  Проведём высоту CL (рис. слева). Заметим, что R – центр описанной окружности прямоугольного треугольника CLM. Докажем, что TC – радикальная ось описанных окружностей треугольников ABC и CLM. Тогда она перпендикулярна линии центров этих окружностей, то есть прямой OR, что и требуется.

           
  Точка C лежит на радикальной оси этих окружностей, как одна из точек пересечения. Осталось доказать, что степени точки T относительно этих окружностей равны.
  Для этого рассмотрим окружность Эйлера треугольника ABC (она содержит точки P, Q, L и M, см. задачу 52511) и окружность, описанную вокруг четырёхугольника AQPB (рис. справа). Имеем  TL·TM = TP·TQ = TB·TA.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада по геометрии
год/номер
Номер 11 (2013 год)
Дата 2013-04-14
класс
1
Класс 10-11 класс
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .